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COMPARISON OF THE SOLUTIONS OF LINEAR AND .
NON-LINEAR POSITIGNAL DIFFERENTIAL GAMES OF ENCOUNTER

A.G. PASHKOV

A positional differential game of encounter of a non-linear, conflict-
controlled system with a given target set is considered. Sufficient
conditions for a successful encounter of the initial system with the
target set are given. The differential game problem of encounter between
two objects with restricted manoeuvrability is solved. The equations

of motion of the objects and the constraints imposed on the controls are
given using the same relations as those in the differential game known /1/
as the "two-car game”. It is assumed that both objects have restricted
manoeuvrability and the game takes place over a fixed time interval. A
positional strategy is constructed for the pursuer guaranteeing that it
arrives at a previously specified distance from the pursued at the instant
of game termination. The paper is related to work done in /1-14/.

1. Let us consider a conflict-controlled system described by the following differential

vector equation: .
©=f@ zuv),usP,ves@ {1.1)

Here z is the n-dimensional phase vector of the system, uandv are the r-dimensional vector
controls subordinate to the first and second player respectively, P and @ are closed and
bounded sets. The function Jf(t 2, u, ¥) is assumed to be continuous and satisfying the
Lipschitz conditions in z in every bounded region of the space {z}.

We define, in the space {z}, the convex closed set M as the target of the first player.

The initial position of the game {t,, %} is fixed.

The admissible strategy of the first player Us is defined as a function which places,
in correspondence with every position {t, z}, a closed set U (f, z) = P, and the mapping (¢, ) —
U (t, z) semicontinueus from above, is multivalued with respect to the inclusion. The set of
motions generated by the strategy Us and emerging from the point {f,, z,} (z, = z (t,)), is denoted
by X (te, %4, Us). We will call the motion zlt]l =zl[t, ¢,, z,, Us] any absolutely continuous function
satisfying the conditions =zlt,] =z, 2" [t]l = Fy (I, z [t]) for almost all t>t,. Here Fy(t z)=
co{f(t, 2, u, v) [us Ut 2), v Q)

The strategy Us guarantees, by definition, the encounter of the point z(f) with the
target M from the position {f,, z}, at the instant ®>1{,, provided that z(}) &M for any
motion z () E X (ty, Z4 Us).

We require to construct an admissible strategy Us which will guarantee that z[f] will
find itself in some specified neighbourhood of the set M at the instant ¢ = ¢ from the
position {t;, %o}.

Let us consider the following auxiliarv system described by the linear differential

equation .
f=A®z+uy —un, P, s (1.2)

Here z is the n-dimensional phase vector of the system, u;, v; are the r-dimensional
vector controls subordinated to the pursuer and pursued respectively, P; and @, are closed
and bounded sets, and the matrix function A (f) is assumed to be continuous.

Let a u-stable function ¢ (¢, ) be given for the auxiliary system (l.2), satisfying the

condition
eft, 1) < € (2 = e (ty, zo) > 0) (1.3)

Let R™ be an n-dimensional Euclidean space. We shall use the symbols <z, y> and | z|
to denote the scalar product of the vectors =z, yER" and the norm of the vector =z.

We will assume that the initial (1.1) and auxiliary (l1.2) system are connected by the
relation

min max (s, 4 () z + w1 — 1) + ¢ > minmax s, f (¢, z, u, v)) (1.4)
wePl e usP o=Q

Here ¢ >0, s is an arbitrary n-dimensional vector and [s| <A where A is the Lipschitz
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constant of the function e, 2) with respect to the variable z, i.e.
A=suple(t, 2y —e(t, z@)| [z —B |7
(t, x(i)) = D, 20 5 @

Here D is an (n + 1)-dimensional region in the position space {#, z}, in which the game
(1.1) is studied.

Let D¥e{t, z)|{s) be a conjugate derivative of the function &{t, z}. Since the function
e(t, z) is u-stable for system (1.2), therefore according to /5/ we have, for any s& R%,

D*e(t, 2} |(s)> Ha {2, 2, 5) = minmax (s, A()z 4+ uy — 1) (1.5)

WEP; vy

We note that from the definition of a conjugate derivative it follows that

D*e(t, 2} {8} = oo (Isli >4 (1.8)
Let us write
e¥(t, 2)=ce(t, ) + e (O —1) 1.7
The function &* is u-stable for system (1.1).
Since
D*e* (4, z) | (s =D* {t,z) + ¢ {1.8)

then to prove the u-stability of the function e*{,z) we must, according to /5/, prove the
inequality

Dt (& x}j(s) >Hl (t, =, 8) = min max<s, f (¢, =z, u, v)> (L.9)
ucP wEQ

for any se A%
Indeed, in |[s| <A, then from (1.6) and (1.8) we have D*e*{t 2)]|(s) = o, therefore (1.9)
holds.
If on the other hand |s}j<A, then from (1.9) there follow (1.4), (1.5) and (1.8).
Let us denote by W (t, 2} the set of points {¢, 2z} satisfying the condition

e* (t, ) <& + ¢ (O —t) (e = const > 0) (1.10}
and relation

e(d, 2) =px M) (plx, M)=min, iz —ylh, y = M) (1.11)

We know /2/ that the set W is a u-stable bridge in the problem of the encounter of the
system (1.1) with the (& + ¢+ (§ — ¢)}-neighbourhood of the set M.

If the initial position {f,, z,} is such that &f{f,, Z,) = &% i.e. €* {ly, 3p) = "+ ¢ (& — 1)},
then according to /2/ the strategy U® extremal with respect to the u-stable bridge W (¢, z),
guarantees that e* (&, z (8) <& + c- (% — &), i.e.

e* (8, z () =p (z(B), M) <&+ (O — 1)
Thus we have the following

Theorem. ©Let a certain u-stable function e (i, &) be given in the game of encounter of
the auxiliary (linear) system (1.2) with the set M, satisfying the condition e (¢, z) < &’ where
e = g (ly, z,), and let relation (1.5) connecting the initial (1.1) and auxiliary system (1.2},
hold.

Then we can construct for the initial {non-linear) system (1.1} a strategy US” (t, 2
extremal with respect to the u-stable bridge W {{, 2}, guaranteeing the encounter of the system

(1.1) from the initial position {&, #,}, with the (& 4 ¢- (# — #y)}-neighbourhood of the set X
at the instant t=4,

yz—-—-—--——-—-——-—-——-—-—
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2. Let us consider a differential game of encounter between two objects. The equations
of motion of the objects and the constraints imposed on the controls are given by the same
relations as those used in the game problem known /1/ as the "two-car game”.

The object P (pursuer) and E (evader) move with constant velocity in the XY plane (Fig.l).
the motion of the object P is described by the equations /1/ (i =1 corresponds to the object,
P, and i=2 to @

x = V;sin0;, gy, = Vyc080;, 0, = (Vi/Ri)oy, | @i | <1 2.1)

Here Vyand V, are constant velocities of P and E, R;and Ryare the minimum radii of their
+trajectories, 8, and ﬁ- are the anglesg bhetween the 0¥ axis and the vectors V. and V.. ragnect-

Lxrajeliories, ©U; anc e angles Delweaen {18 ang Tne vacioreg ana resp

ively, and ¢, and @, are the scalar controls of P and E respectively. The points C; and C,

denote the centres of curvature of the trajectories of P and E respectively (Fig 1.
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between the objects P and E and the instant ¢=® of game termination
e (8) = {lz, (0) — z (AW + [y, (B) — 1 (D)I*}" 2.2)

The pursuer P minimizes the game payoff (2.1}-(2.2) and the evader maximizes it.

We shall regard as the solution of the problem (2.1)-(2.2) the construction of a positiocnal
strategy U9 {t, z,y) of the pursuer P guaranteeing that it will arrive at the instant {=¥¢
at the previously known distance &* >» (0 from the evader, i.e. & (#) < e*.

3. we will consider the initial problem for the case (2.1)~(2.2), when the following
expansions hold for 8, (66; is a falrly small quantity):
8, = 8,° | 86, 3.1)

The auxiliary differential game of encounter will be linear. The motion of the objects
P and F in the auxiliary problem will proceed according to the linear equation (=1
corresponds to the object P, and i =2 to the object E)

;" = V, (sin 0,° + 80,9, y,’ = V; (cos 8, — 86, sin 6,%) (3.2)
68) = (V/R) oi, |9 | <1 (i =1, 2)

Let us formulate the auxiliary game problem. Let the motion of the object P and the
choice of control be given by (3.2). We will assume that the motion of the cobject E and the
constraints imposed on its control are given by relations {(Z.1). The game is played in a
fixed time interval [, ¥].

We will assume that the following inequality holds for the auxiliary game (3.2):

V¥R, > VYR, (3.3)

The payoff functional is given for the auxiliary game (3.2)~(3.3) by the same relation
(2.2) as for the initial game {(2.1). The pursuer P minimizes, and the evader E maximizes the
value of e{f#). The initial positions of the objects P and E in the auxiliary game (3.2)-(3.3)
are given by the vectors {z°% 1. (66) = 0} and {z,° ¥ (6¥)® = 0} respectively, and the values of
the geometrical coordinates coincide with the initial values of the geometrical coordinates of
the objects P and E in the initial game (2.1)-(2.2).

>

4. 1Let us construct in the XT -plane the domains of accessibility up to the instant
t =19, by the objects P and E, in the auxiliary game (3.2), corresponding to the initial
positions {t, &% ¥° (68,)° = 0} and {4, z.° 1.° (66;)° = 0}.

We can see that the domains of accessibility G =GY{, 9) and GO =G {, 4) by the
objects P and E in the auxiliary game (3.2)-(2.2) will be the segments of the straight lines
A;B; and ApB: (Fig.2) perpendicular to the vectors #, and R, respectively, where

={V:(® —1)sin 8, V; (& —1t)cos8,°} (i =1, 2)

The point 4y (z,* (8), 1" (8)) (point A, (zy* (8), y* (§)) of the domain of accessibility
G (G®)  can be reached by the object P (object E) at the instant ¢ =0, provided that the
latter exercises constant control ¢ == +1 (g, = +1) over the whole time interval ¢, <(i<l®.
Similarly, the point Bz {8),y,"(®)) (point By(zy (8), 4~ (B)) of the domain of accessibility
GM (GP®) can be reached by the object P (object E) at the instant ¢ = ¢ provided that the
latter exercizes constant control @, == —1 (¢, = —1) over the whole time interval ¥, <t <C49.
The object P (object E) reaches at the instant t = ¥ the point O (z,° (8), »,° (#)), which
is the centre of the segment A;B; (point O (2. (0), y,° (#)) which is the centre of the segment
A,B,), provided that it exercises a constant control ¢, =0 (g = 0) over the period t, <t
Let us introduce the notation

rt, ) = |04 | =|0:B| (i=1, 2)
Integrating the Egs.(3.2) at ¢, = -+1 or ¢, = —1 (p, = +1 or g, = —1), we can calculate
ri (¢, 8) = (V; (& — ))¥QRR;} (¢ =1, 2) (4.1)
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Fig.7

From (3.3) it follows that
it 8 > ), Vi, ¥ {4.2)

The centre of the domain of reachability G®) in the game (3.2), (2.2) {the point ;) has
the following coordinates at the instant t=17:

{Zior Ui} = {2° + Vi (& — 1) sin 8,° -+ (86,)° cos 0,°V; (¥ — &);
¥ 4 Vi (8 — 1) cos B, — (86,)° sin 0V, (8 — £)} (i = 1, 2)

Thus we have constructed the domains of reachability by the objects P and E in the
auxiliary linear game, which represent convex sets. Here, according te (4.2), the "radius"
ri (¢, 8) of the domain of reachability G® by the object P is greater than the "radius"

r, (¢, 9) of the domain of reachability of E.

5. Let us obtain an expression for the function of hypothetical desynchronization /2/
gy (t, T3, Y1, 08y, 25, ¥y, 86)  in the auxiliary game (3.2), (2.2). We consider once again the
domains of reachability G® and 6® (Figs.2-7).

The function of hypothetical desynchronization of the problem in guestion can be regarded
as the distance between the domain of reachability G® (the segment of the line A4,B;) and
the most distant point of the domain G® (a point on the segment A,B;). All possible cases
of the mutual distribution of the domains of reachability G® and G*® are shown in Figs.2-7.
Let us discuss them.

1°. The domains of reachability by the objects P and E are non-collinear and the domain
G can be fully projected onto G® (Fig.2). It is clear that in this case the most
distant point of the domain G® will be one of the end points (in this case the point By).
The point of G® nearest to it lies on the intersection of the perpendicular dropped from
the end point of G® (point B,) on the segment A;B; {(point D). Therefore in this case the
function of hypothetical desynchronization has the meaning of the maximin of the distance
petween the points of G® and G&% (the distance between the points B, and D). Thus the
value of the function of hypothetical desynchronization is obtained here on the unique vector
I (I = DB,).

20, The domains of reachability by P and E are also non-collinear, but unlike the
previous case the domain &® cannot be fully projected on to the domain G@.  The farthest
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point of G® will be one of the end points (the point B;), and the point of G* nearest
to it will be one of the end points (the point B;). Here the maximin of the distance between
G® and G® is the distance between these two extreme points (I = B‘Bx)

3°. The domains of reachability G® .and G® intersect, and their centres coincide,

i.e. 0y=0,  In this case the maximin of the distance between the points of G® and GO
is attained simultaneously at two pairs of points. The distance between the points A4, and
A; and between B, and B, is clearly | 4.4, | = | BB, |. Thus the value of the hypothetical

desynchronization function (the maximin of the distance between G® and 6® is attained
simultaneously along the pair of vectors I:1I; = BB,, I, = A,4,.

4°, The domains G® and G® are collinear (Fig.5). 1In this case the distance between
any point of G® and the domain G® is the same. Thevalue of the maximin of the distance
between G® and G® is reached simultaneously on the infinite set of vectors I[.

50 The domaing G® and G® (Fig.6) lie on a single straight line and 6@ GO, 1In
5¥. The domains and G (Fig.6} I

lie a single 1t line and — GN,
this case the function of hypothetital desynchrdnization is clearly equal to zero.

6°. The domains G® and G® (Fig.7) lie on a single straight fine, but G® T G®. Here
wue maximin of the distance between the domains 6@ and G is equal to the distance between
the end point of G® not belonging to GM, and the end point of G® nearest to it. (In this
case this is the distance between By and B;). The maximin value is attained on the unique
vector [ directed from the end of the domain &® to the end point of 6®. (In this case
this is I = B,B,).

The above discussion implies that the domains of reachability G® and G® are convex,
closed and bounded sets (segments of straight lines). According to (4.2) the ¥radius® of
GM is greater than the "radius" of G®, i.e. n(t,4) >r (¢, %) for all t& g, oL

The hypothetical desynchronization function /2/ in the game (3.2), (2.2) has the form

go=—go(t, 1, 1, 501, 22, ¥, 88;) — max min  p{G®{: ) 6V, 8) (5.4)
{2, BIEC® {ay, piecl)

Here p is the distance between the point {z,, y,} & G® and GO, Let the maximum of the
right~-hand side of (5.1) be attained at some point {&*, ¥*}< G®, and the minimum at some
point {xn*, y,*} = GO,

We can now write the function €, in the form

2o = lgy® + ¢ (5.2)
@ =q @ 2y, 25 00y 88y) = 2% — ¥ =

(& — t) (Vysin 8,° — V, sin 6,°) 4 ( — t) (V, cos 6,96, —

V, cos 6,°86,%) -+

(0 — 8)%/2) ((V4® cos 8,%94*)/ Ry — (V32 cos 8%, ¥V Ry)) + 2.° — =°
4 = G (t Y1, Vs 591» 592) = Yg* — y* =
% — (6 — 1) (
Vl sin 01"66“’) —
(& — 1%2) ({V3® cos 0,°9,*)/ Ry — (V% sin 6,%,*/Ry)) + »° — u,°

Here g, = ¢,*, ¢; = @,* denote the values of the controls of P and E respectively,
satisfying the constraints (3.2) and ensuring the arrival of the cbjects P and E at the points

{=* (8), n* (9)} E 6O, {* (§), 1* (B)) & G

According to /2/ it can be shown that in the first, second and sixth case (Figs.2,3,7)
of the auxiliary game of encounter (3.2), (2.2} we have the regular case of the game of
encounter.

The positions of the game (3.2), (2.2) corresponding to the third, fourth and fifth case
(Figs.4,5,6) form a regular set S. They are characterized by the fact that the value of the
program maximin €. is attained for them simultaneously on two or more vectors [ It can be
shown that for the positions of the game (3.2), (2.2) belonging to S, the function g, will be
¢ -stable.

Below we will show that using the @-stability of the function of program maximin &,
we can censtruct the required strategy U,® (t, z,¥) of the object P from the condition of
maximum gradient of the function &, where the gradient exists.

6. Let us write Egs.(2.1) in the form of a 6~th order system, making the change of
iables according to the formulas

Zy =&y, I =Y, 83 = Oy, Zy =2, Z5 = Yu, 35 = O, (6.1)

Zy = Vl sin 2g, Zz. = V1 COS Zg, 53‘ = (Vl/Rl) @y (6,2)
Vysin2s, 25 = Vacoszs, 2s = (Vo/R:) @2
- 1 < P1:P2 < 1

Py
If



Here @, and @, are the controls of P and E respectively, and z == {2, Z,, ..., 2s} is the
vector of phase coordinates. We shall regard the vector =z (t) = {t, 2, %y, ..., 2} as the position
of the game, and the time of the game is fixed [t,, 0.

In accordance with (2.2), the set of termination of the game (6.2) in guestion is given

by the relation
M={t=19 2z — )+ @& —a)f" =0} (6.3)

The aim of the object P is to ensure that z (§) reaches ¥ by the time ¢==1, and the second
object tries toc prevent this.

The fixed initial position of the game (6.2), (6.3) {ty 20 2" 2z = 6% 320, 20 2z’ = 8,9}

Let us now write the equations of the auxiliary system (3.2) in the form of a 6-th order
system, making the change of variable according to the formula

% = Ty, By = Yy, 23 == 86y, 2y == Xy, 25 = Yy 2 = 86, (6.4)

Now the equations of the auxiliary, conflict~controlled system will have the form

z," = V) (sin 25° + 25 cos %), 2, == V; (cos z,® — z, sin zy) {6.5)
23 = (Vi/Ry) @1, 2, = Vy (sin 2% -+ 24 cos z5")

75 = Vs, (cos 2% — zg 8in 2%, 24 = (Vo/Ry) ¢,

— 1o, <1

Here ¢, and @y are the controls of P and E respectively.

Determination of the position and time of the game, the termination set M, the initial
position and the aims of the objects P and E in the auxiliary game are all the same as in
the initial game (6.2}, (6.3).

Let us consider, for the positions {f,2} &= 8, the function of program maximin &, in the

auxiliary game (6.5), (6.3). We have, for the positions in question, a regular case of a
game of encounter of the system (6.5) with M. We know /2/ that in the regular case of the

game of encounter the function & (¢, 2, 2, ... 2 is differentiable and satisfies the relation
ming, Maxg, deo/dt =0 {6.5)

Taking into account (6.4), we have the following relations:
€ {ty 2y, 29, -+ s Zg) = 6.7)

[912 (t: 21y 235 Iy 23) + 922 (tv Zyy 23, zb)lv'

gy =@ — ) (Vasin 8 — ¥, sin 6,°) + (& — ?) (26¥, c086,° —
25Vy €08 6,°) + (& — )3/2) ((V,® cos 8,y *)/ Ry ~
(V12 cos 8,°@,* ) Ry) + 24 — 215

gy = {0 — 8) (V3 c08 8" — V; cos 8,°) — (& — 1) (z¢Vy sin 6 —
z,V, sin 6,%) — ((§ — £)¥/2) ((V; cos 8,°p,*)/ Ry —
(V1? sin 0,%p,*)/Ry) + 2, — 2

Here ¢,* and @,* are the program controls of the objects P and E respectively, on which
the value of the program maximin is reached in the course of computing the function &g
According to Sect.l we have
e* (¢, z) =g (¢, 2) + ¢ (O — 1) (6.8)
where the constant ¢ >0 will be determined below.
Let us denote by s (i, z) the partial derivatives of the function &%, i.e. (4, 2) = (9e*/82;)
(t=1,2, ..., 6. It can be confirmed that

st 2+t 5) =1, 57t )+ 5P 2) =1 (6.9)

7. 1In accordance with Sect.l and (6.7) ¢-stable bridge W (t, z) in the problem of
the encounter of the initial system (6.2), (6.3) with the (& 4 ¢- (& — f,))-neighbourhood of the
set M, consists of the positions satisfying the relation

e* (t, 2) T e+ (B — 1) {7.1)
and the condition
e* (9, z () =p (2(8), M) & + e (B 1) (7.2)
gl = £g (SG) zi})
Taking (6.8) into account, the strategy USO), extremal with respect to the stable bridge
W (2, 2) defined by the expressions (7.1), (7.2), will have, according to /3/, the following
form:
when {t, z}E S:
@, == sign (—cos 6,%, (f, 2) + sin 6;%, {1, z) (1.3)
if
o (¢, ) = —sin 0y%, (t, 2) -+ cos 01%, (¢, 3) % O
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if
oft,s)=0:¢ (-1, 1]
when {¢,z} = §: ¢, =[-1, 1l
The last two relations mean that the control ¢ can take any value satisfying the con-
straint (6.2).

8. Let us consider the initial system (6.2) and auxiliary system (6.5). In order to
compare these systems, we introduce the vector s, defining it as follows.

If {t,z} & S and o (t,2) =0, then s==grad,e* ({,2). If {t,2} ES§ and o (t,2) =0, then
s=10. We write s =10 for the positions {t,z}&= S.

Next we estimate the magnitude of the difference between the scalar product of the vector
s and the right-hand side of the initial system (6.2), and the scalar product of the same
vector s and the right-hand side of the auxiliary linear system (6.5).

Taking into account that the third and sixth equation of the system (6.2) and (6.5) are
the same, and the components of the vector s have the form (6.9), we find that the estimate
A* of the difference between the scalar products mentioned above, taking (3.1) into account,

will be
A% Yy [V (88,*) + Vs (80,%)°]

Here the methods of averaging /15/ can be used to compute the quantities 06,%, 068,%.

Assuming that ¢ = A*, we can easily confirm that the inequality (1.4) holds for the
initial system (6.2) as well as for the auxiliary system (6.5).

Thus we see that all conditions of the theorem given above hold. This implies that the
strategy U, defined by expressions (7.3) guarantees the encounter of the initial system
{6.2) with the (g®4- A* (& — {,)) -neighbourhood of the set M at the time t=19.

Note 1. Let us return to the formulation of the auxiliary game of encounter given in
Sect.3 of this paper. Consider the motions of the object P in the XY plane caused by the
initial system (2.1) and auxiliary system (3.2). We will assume here that the initial position
at the instant t=1¢ is the same and the object P uses at ¢, t< ¢ the same control ¢, = ¢,*
in both cases, satisfying the constraint (2.1). It can be shown that the position of the
object P moving according to Eq.{3.2), will differ at the instant t=4® with an accuracy of
the order o(88,), from the position of P moving in accordance with the initial Eq.(2.1) by an
amount

A= Ay (%) = (2} V2 (8883 (8~ ¢)

The value of §,* is found as follows. First we integrate the third equation of system
(3.2) at t,<t<9® for ¢ =¢* and initial condition &, () =0, and average the resulting
value /15/.

Using exactly the same arguments we can obtain an estimate for the difference between
the position of the object E moving according to the initial Eq.{2.1), and its position at
t=49: when it moves according to the linear system (3.2), in the form

Ag* = B3 (%) = (¥3) Va (38.%)* (8 — 1)

Here .gy= 2* 1is the control of E. The value of &86,* is found exactly as before.

Using the above arguments, we arrive at the following qualitative conclusion. Let the
object P (E) moving according to the auxiliary system (3.2) from a fixed initial position
at the instant t=1,, with some control ¢, = q;* (2= @:%),  arrive at the instant (=% at
some point 4;(4y of its domain of reachability 6" (6®). Then from what was said before it
follows that if the object P(E) moves in accordance with the initial system (2.1} from the
same initial position at t=1# and with the same control ;= @* (pa= ¢*), then it will appear
at the instant t=©@ at some point on a circle with its centre at the point 4, (4,), of radius
ri* (rp*) where nrn*= A" (n*= A*). From this it follows that the domain of accessibility of
the initial system (2.1) will be situated in some e*-neighbourhood of the auxiliary system
{3.2). Clearly, we have *=A* for (3.2) and &*= A* for the system (3.2) with i=2
(Figs.2-7).

The last assertion implies that having the above estimates for the initial game problem
available, we could have restricted our investigation to considering the linear ({auxiliary)
differential game of encounter only.

Note 2. All the arguments used in this paper can be extended to the case when the
velocities of the cbjects P and E are known functions of time.
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ON AN ALTERNATIVE FOR PURSUIT-EVASION GAMES IN AN INFINITE TIME INTERVAL®

in

ALA. BZBMOV

The structure of phase space of differential pursuit-evasion games is
studied for the case when the evader is subjected to information dis-
crimination with an advance by 8>>0, 6 = const. The method of transfinite
iteration of the Pshenichnyi operator is used to establish an alternative
for differential pursuit-evasion games in an infinite time interval.

1. Definition of the basic concepts. Consider a differential pursuit-evasion game
the phase space R with the equation of motion

2 =f@uv, ucPCR, veQC R .1

and the terminal set M ¢ R?. The aim of the pursuer who controls the parameter u is to
bring the phase point from its initial position to the set ¥; the aim of the evader who
controls the parametexr v, is the opposite. At every instant of time ¢ > 0 the pursuer has access

to
we

up to date information z (f) and v (s),t <s<C¢ -+ 8 (everywhere in 86>>0). Following /1/,
assume that the number & is chosen by the evader at the start of the motion, and does not

change during the motion {(comp. with /2/).

The type of informability described above is realized below by separating specific classes of the

strategies P, Q of the pursuer and evader respectively (for brevity we will call such a pair

of

strategies the game). Here every triad E= RY, U= P, V& Q generates a unique trajectory

z{t; 5, U, V), t >0

Let F denote either a segment of the form [0,7], or a semi-axis [0,00). By definition, a

pursuit originating at the initial point § can be successfully completed in the interval [,

if

a strategy U =P exists such that an inclusion z(4E U, V)e&=M occurs at some 17T

whatever V&Q is. Similarly, escape from the point § is possible in the interval I, if a
strategy Ve Q exists such that we have z(; & U, V)E M for any te 1, whatever U P
is.

Let I* (or I") denote the set of all points from which the pursuit (or possibly escape)

*prikl.Matem,.Mekhan.,26,4,561-566,1986



