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COMPARISON OF THE SOLUTIONS OF LINEAR AND 
NON-LINEAR POSITIONAL DIFFERENTIAL GAMES OF ENCOUNTER* 

A.G. PASIIKOV 

A positional differential game of encounter of a non-linear, conflict- 
controlled system with a given target set is considered. Sufficient 
conditions for a successful encounter of the initial system with the 
target set are given. The differential game problem of encounter between 
two objects with restricted manoeuvrability is solved. The equations 
of motion of the objects and the constraints imposed on the controls are 
given using the same relations as those in the differential game known /l/ 
as the "two-car game". It is assumed that both objects have restricted 
manoeuvrability and the game takes place over a fixed time interval. A 
positional strategy is constructed for the pursuer guaranteeing that it 
arrives at a previously specified distance from the pursued at the instant 
of game termination. The paper is related to work done in /l-14/. 

1. Let us consider a conflict-controlled system described by the following differential 
vector equation: 

z' = f (t, x, u, v), u E P, v E Q (1.1) 

Here z is the n-dimensional phase vector of the system,uandv are the r-dimensional vector 
controls subordinate to the first and second player respectively, P and Q are closed and 
bounded sets. The function .j(t, 5, U, v) is assumed to be continuous and satisfying the 
Lipschitz conditions in 5 in every bounded region of the space (5). 

We define, in the space {x}, the convex closedsetM as the target of the first player. 
The initial position of the game {to, 20) is fixed. 

The admissible strategy of the first player Us is defined as a function which places, 
in correspondence with every position {t, z}, a closed set U(t,z)e P, and the mapping (t,z)--t 

u 0, x) semicontinuous from above, is multivalued with respect to the inclusion. The set of 
motions generated by the strategy U* and emerging from the point {t*,r,}(s, = s(t*)), is denoted 

by x (t*, I*, Ue). We will call the motion z[tl = z It, t,, z*, iJ*l any absolutely continuous function 
satisfying the conditions z it,] = z*, 2’ [tl = Fu (t, 5 ItI) for almost all t> t,. Here Fu (t, 5) = 
co {f (4 x, u, u) I u E U (t, I), u E 0). 

The strategy ue quarantees, by definition, the encounter of the point x(t) with the 
target M from the position {to,so}, at the instant 6>t,, provided that z(6)E M for any 
motion z (.) E X (t+, 5*, Us). 

We require to construct an admissible strategy Ue which will guarantee that z[t] will 
find itself in some specified neighbourhood of the set ?l at the instant t = 6 from the 
position {to, x0). 

Let us consider the following auxiliary system described by the linear differential 
equation 

I' = A (t) z + u1 - vl, y E P,, v, E Ql 6.2) 

Here x is the n-dimensional phase vector of the system, ur, v, are the r-dimensional 
vector controls subordinated to the pursuer and pursued respectively, PI and Q1 are closed 
and bounded sets, and the matrix function A(t) is assumed to be continuous. 

Let a u-stable function &(t,z) be given for the auxiliary system (1.2), satisfying the 
condition 

e (t, 5) < E0 (Z = 8 (to, 50) > 0) (1.3) 

Let R” be an n-dimensional Euclidean space; We shall use the symbols <s, u) and 11 zI/ 
to denote the scalar product of the vectors 5, YE R” and the norm of the vector 2. 

We will assume that the initial (1.1) and auxiliary (1.2) system are connected by the 
relation 

min max <s, A (t) x + UI - VI) + c > u.~.; rnz; <s, f (t, z, u. v)) 
YEPX REQ, 

(1.4) 

Here c>O, s is an arbitrary n-dimensional vector and ll s u < 1" where h is the Lipschitz 
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constant of the function e(t, x) with respect to the variable x,i.e. 

h = sup 1 E- (t, x(l)) - e (t, z@)) j // 0 - .&) 1/-i 

(t, x’“‘) E D, z(1) # z(z) 

here D is an (n f l)-dimensional region in the position space (t, z}, in which the game 
(1.1) is studied. 

Let D*e(t, z)l(s) be a conjugate derivative of the function e(t, x). Since the function 
e(t,z) is u-stable for system (1.21, therefore according to /5/ we have, for any SGP, 

D*e (t, x) 1 (s) > Ha (t, x, s) = min max (s, A (t) x + ul - VI> 
%EP, w%Q, 

(4.5) 

We note that from the definition of a conjugate derivative it follows that 

B*s (t, 2) I@) = 00 ~llsll > a) 0.6) 
Let us write 

e* (t, z) = e (t, 2) + c. (@ - t) 0.7) 

The function e* is u-stable for system (1.1). 
Since 

zJ*e* (t, 2) f (8) = li*e f#, 2) + c W) 

then to prove the u-stability of the function e*(t,x) we must, according to /5/, prove the 
inequality 

P&* (f, 2) I@) &Hz (f. 2. 4 = zp m$; (8, f(f, 2, u, a)> 0.9) 

for any SEP. 
Indeed, in Qsll<h, then from (1.6) and (1.8) we have D*e*(t,z)l(s)=eo,. therefore (1.9) 

holds. 
If on the other hand IIs#<h, then from (1.9) there follow (1,4), (1.5) and (1.8). 
Let us denote by W(t,r) the set of points {t,z} satisfying the condition 

s* (t, Z) Q e" + c. (6 - t) (e” = const > 0) (l.S3) 

and relation 

e (6, 4 = P (x, W (P (x, W = min, II z - y IL Y E M) (1.11) 

V& know /2/ that the set W is a u-stable bridge in the problem of the encounter of the 
system (1.1) with the (&O +c* (6 -t~)~neigh~urhood of the set M. 

If the initial position {to, roof is such that E (4, zo) = e@, i.e. e* (to, jco) = e" i- c* (6 - to), 
then according to /2/ the strategy Vi"' extremal with respect to the u-stable bridge W(t, x), 

guarantees that e*(fi,x(-it)),< E' i- c.(ti - to), i.e. 

e* (6, m (6)) = p (x(a), M) < e” + c. (6 - to) 

Thus we have the following 

Theorem. Let a certain u-stable function e(t, x) be given in the game of encounter of 
the auxiliary (linear) system (1.2) with the set N, satisfying the condition e (t, x)< e” where 
so = s (to, x,1, and let relation (1.5) connecting the initial (1.1) and auxiliary system (1.21, 
hold. 

Then we can construct for the initial (non-linear) system (1.1) a strategy U'p' (& 2) 
extremal with respect to the u-stable bridge W (t,x), guaranteeing the encounter of the system 
(1.1) from the initial position (t,, zO}, with the (e" -i-c. (6 - to))-neighbourhood of the set Ef 

at the instant t=*, 

Fig.1 
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2. Let us consider a differential game of encounter between two objects. The equations 
of motion of the objects and the constraints imposed on the controls are given by the same 
relations as those used in the game problem known /l/ as the "two-car game". 

The object P (pursuer) and E (evader) move with constant velocityinthe XYplane (Fig.1). 
the motion of the object P is described by the equations /I/ (i = 1 corresponds to the object, 
P, and i=2 to Q 

21' = Vi sin O*, yi' = Vi COS0i, 01' = (V*IRi)(pi, I ‘pi I < 1 (2.4) 

Here VIand V, are constant velocities of P and .&&and RIare the minimum radii of their 
trajectories, %r and 6, axe the angles between the OY axis and the vectors Yrand V* respect- 
ively, and 'pI and ms are the scalar controls of P and E respectively. The points Gland C, 
denote the centres of curvature of the trajectories of P and E respectively (Fig.1). 

The problem is considered in the time interval [to, 61. The payoff function is the distance 
between the objects P and E and the instant t= 6 of game termination 

s (%, = (14 (6) - z1 (%)I" + [!Jn (6) - YI (%)I")'/* (2.2) 

The pursuer P minimizes the game payoff (2.1)-(2.2) and the evader maximizes it. 
We shall regard as the solution of the problem (2.1)-(2.2) the construction of a positional 

strategy =CJ,cat (t, 2, y) of the pursuer P guaranteeing that it will arrive at the instant t=% 
at the previously known distance E* >O from the evader, i.e. e (6) d e*. 

3. We will consider the initial problem for the case (2.1)-(2.2), when the following 
expansions hold for 01 (60, is a fairly small quantity): 

6* = 610 + he1 (3.1) 
The auxiliary differential game of encounter will be linear. The motion of the objects 

P and E in the auxiliary problem will proceed according to the linear equation (i = 1 
corresponds to the object P, and i = 2 to the object E) 

Xl' ZZ Vi (sin Bio f 6e,o), y,’ = Vi (co9 et - set sin 0*O) (3.2) 

(se,) = (vi/RI) cpf, ICP, I c 1 (i = 1, 2) 

Let us formulate the auxiliary game problem. Let the motion of the object P and the 
choice of control be given by (3.2). We will assume that the motion of the object E and the 
constraints imposed on its control are given by relations (2.1). The game is played in a 
fixed time interval Ito, 61. 

We will assume that the following inequality holds for the auxiliary game (3.2): 

V~'1BIR1 > VlV& (3.3) 

The payoff functional is given for the auxiliary game (3.2)-(3.3) by the same relation 
(2.2) as for the initial game (2.1). The pursuer P minimizes, and the evader E maximizes the 
value of s_(%). *The initial positions of the objects P and E in the auxiliary game (3.2)-(3.3) 
are given by the vectors (z10,yto,(6%)o = 0) and {z~",y~a,(62p)c = 0) respectively, and the values of 
the geometrical coordinates coincide with the initial values of the geometrical coordinates of 
the objects P and E in the initial game (2.1)-(2.2). 

4. Let us construct in the XY-plane the domains of accessibility up to the instant 
t=%, by the objects P and E, in the auxiliary game (3.21, corresponding to the initial 
positions {&. q", ho, (&)' = 0) and {to, xe", y,', (~0*)O = O}. 

We can see that the-domains of accessibility G(l)= G')(t,%) and G(a)=G(z)(t,%) by the 
objects P and E in the auxiliary game (3.2)-(2.2) will be the segments of the straight lines 
A,Bl and A,Ba (Fig.2) perpendicular to the vectors ?&and ?i, respectively, where 

iii = {Vi (6 - t) sin ep; vi (6 - t) cos eiq (i = 1, 2) 

The point A, (zI' (%), &' (6)) (point AZ (LQ+ (%), y,* (%)) of the domain of accessibility 
G(l)(G($)) can be reached by the object P (object E) at the instant t = 6, provided that the 
latter exercises constant control mr = -+-1 (cp, =+I) over the whole time interval b,,<t<%. 

Similarly, the point Bl(~l-f%),~~-(%)) (point 3,(x8-(it), y,-(6)) of the domain of accessibility 
G(')(G(*)) can be reached by the object P (object E) at the instant t== 6 provided that the 
latter exercizes constant control 'pl = -1 (m, = --1) over the whole time interval to<<<%. 

The object P (object E) reaches at the instant t = 6 the point O,(z,"(%), yrO(%)), which 
is the centre of the segment A,B, (point O,(d(%), &f (%)) which is the centre of the segment 
A,&), provided that it exercises a constant control 'pl =O(cp, = 0) over the period to\<t<%. 

Let us introduce the notation 

Ft(t, %)=I I~izd,\=\t_?&,( (i=i, 2) 

Integrating the Eqs.(3.2) at 'pr = $1 or 'pl= --1 ((PI = +2 or 'pt = --1), we can calculate 

ri (t, 6) I- (Vi (% - t))2/(2R~) (i = $7 2) (4.1) 
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Fig.2 

Fig.4 

Fig.6 

From (3.3) it follows that 

Fig.3 

Fig.5 

Fig.7 

r, 0, 6) > ra (6 @I, Vt 65 It,, 61 $4.2) 

The centre of the domain of reachability G(') in the game (3.21, (2.2) '(the point Oi) has 
the following coordinates at the instant t=@: 

@is, yi,) = {5gc + Vi (S - t) sin eio + (6e$ co9 BioVf (Q - t); 

pi0 + Vi (6 - t) cos 6i” - (66J” sin eioVi (6 - t)} (i = 1, 2) 

Thus we have constructed the domains of reachability by the objects P and E in the 
auxiliary linear game, which represent convex sets. Here, according to (4.2), the "radius" 

rl (C 6) of the domain of reachability G(l) by the object P is greater than the "radius" 
r2(t, 6) of the domain of reachability of E. 

5. Let us obtain an expression for the function of hypothetical desynchronization /2/ 

so 0, 41 Yl, @,, % Yz, 6%) in the auxiliary game (3.21, (2.2). We consider once again the 
domains of reachability G@) and G(*) (Figs.2-7). 

The function of hypothetical desynchronization of the problem in question can be regarded 
as the distance between the domain of reachability G(l) (the segment of the line A,B,) and 
the most distant point of the domain G(*) (a poiht on the segment A&) All possible cases 
of the mutual distribution of the domains of reachability G(l) and G@) are shown in Figs.2-7. 
Let us discuss them. 

lo. The domains of reachability by the objects P and E are non-collinear and the domain 
GCN can be fully projected onto G(l) (Fig..?). It is clear that in this case the most 
distant point of the domain G@) will be one of the end points (in this case the point &). 
The point of G(r) nearest to it lies on the intersection of the perpendicular dropped from 
the end point of G(a) (point &) on the segment A,& (point D). Therefore in this case the 
function of hypothetical desynchronization has the meaning of the maximin of the distance 
between the points of G(*) and G(l) (the distance between the points B, and D). Thus the 
value of the function of hypothetical desynchronization is obtained here on the unique vector 
5 (5 = DBS). 

26. The domains of reachability by P and E are also non-collinear, but unlike the 
previous case the domain G(") cannot be fully projected on to the domain G(r). The farthest 



425 

point of G@ will be one of theendpoints (the point B,), and the point of G(l) nearest 
to it will be one of the end points (the point Bl). Here the maximin of the distance between 
G(n and G(') is the distance between these two extreme points (1 =m%). 

30 The domains of reachability G(l). and G(*) intersect, and their centres coincide, 
i.e. 0; = 02. In this case the maximin of the distance between the points of G(n and G(n 
is attained simultaneously at two pairs of points. The distance between the points A, and 
Ai and between Bs and Bl is clearly IAdA, I= I&3, 1. Thus the value of the hypothetical 
desynchronization function (the maximin of the distance between G(') and G(n is attained 
simultaneously along the pair of vectors t: il = BTP, i, = A,A,. 

4O. The domains G(l) and G(*) are collinear (Fig.5). In this case the distance between 
any point of G@) and the domain G(l) is the same. Thevalue of the maximin of the distance 
between G(*) and G(*) is reached simultaneously on the infinite set of vectors i. 

so. The domains G@ and G(q (Fig.61 lie on a single straight line and G@) cG@). In 
this case the function of hypothetical desynchrdnization is clearly e ual to zero. 

6'. The domains G(l) and G(*) (Fig.7) lie on a single straight 9 ine, but G@)yG@).Here 
L,,Z maximin of the distance betweenthe domains G@) and G(l) is equal to the distance between 
theendpoint of G(a) not belonging to G(l), and the end point of (3') nearest to it. (In this 
case this is the distance between BP and B$).The maximin value is attained on the unique 
vector f directed from the end of the domain G@) to the end point of G@), (In this case 
this is t=ml). 

Theabovediscussion implies that the domains of reachability G(r) and GW are convex, 
closed and bounded sets (segments of straight lines). According to (4.2) the "radius" of 
G(l) is greater than the "radius" of G@, i.e. rZ (t, is) > r, (t, 6) for all t E It,, 81. 

The hypothetical desynchronization function /2/ in the game (3.2), (2.2) has the form 

Here p is the distance between the point {Q, yn} E G(2) and G(l). Let the maximum of the 
right-hand side of (5.1) be attained at some point {;cp*, y,* }EG@), and the minimum at some 
point {rr*, n*} cz G(r). 

We can now write the function $ in the form 

8, = 14ra -t .*I~* 

q1 = q1 (t, Xl, x*, se, se*) = zs* - q* = 
(8 - t) (V, sin e,o - VI sin 0,“) + (8 - t) (V, cos O,o&+,o - 
v, GOS 0~8~~0) -I- 

(5.2) 

(6 - t) (v, cos erO - v, cos elo) - (e - t) (v, sin e,o6e+ 
v, sin e106e,o) - 
((a - q*/z) ((vaS cos e~o~~*)/~~ - (VIZ sin elo(p,*ml)) 5 gBo - .v%O 

Here 'pl = cp,*, 'pS =I&* denote the values of the controls of P and E respectively, 
satisfying the constraints (3.2) and ensuring the arrival of the objects P and E at the points 

{zr* (a), Y,* (@)I E G(n, {zz* (W, yp* (6)) cz Go) 

According to /2/ it can be shown that in the first, second and sixth case (F’igs.2,3,7) 
of the auxiliary game of encounter (3.21, (2.2) we have the regular case of the game of 
encounter. 

The positions of the game (3.21, (2.2) corresponding to the third, fourth and fifth case 
(Figs.4,5,6) form a regular set S. They are characterized by the fact that th_e value of the 
program maximin i&is attained for them simultaneously on two or more vectors 1. It can be 
shown that for the positions of the game (3.2), (2.2) belonging to S, the function es, will be 
m-stable. 

Below we will show that using the cp-stability of the function of program maximin e, 
we can construct the required strategy U, (*)(t,~,v) of the object P from the condition of 
maximum gradient of the function E,, where the gradient exists. 

6. Let us write Eqs.(2.1) in the form of a 6-th order system, making the change of 
variables according to the formulas 

z, 2: 4, 2, = Y,, sa = el, z, = x2, z5 = Y,, z6 = ee 

NOW the initial conflict-controlled system will have the form 

21 * = VI sin zS, ~2~’ = V, co9 zJ, z3’ = (VI/RI) ql 

2 se = V, sina, zJ' = V, cosza, 26' = fV,/R,)cp~ 

- 2 < ‘pl>‘pS < 1 

(6.1) 

(6.2) 
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Here cp, and c+?~ are the controls of P and E respectively, and z = {zl, z,,...,za] is the 
vector of phase coordinates. We shall regard the vector z(t)= {t,z,,z,,...,zg) as the position 
of the game, and the time of the game is fixed [to,6]. 

In accordance with (2.2), the set of termination of the game (6.2) in question is given 
by the relation 

M = {t = 6; 2: [(z* - z$ t_ (2, - zJ21'~: = Of (6.3) 

Theaimofthe objectPistoensurethat z(G) reachesMbythetime t=6, and the second 
object tries to prevent this. 

The fixed initial position of the game (6.2) , (6.3) (t,, zf, zz", ZS@ = 8x0, z,“, Z,‘, ~8’ = tfBo}. 

Let us now write the equations of the auxiliary system (3.2) in the form of a 6-th order 
system, making the change of variable according to the formula 

z1 = 22, 2, = y,, za = &3r, Z& = xz, 25 = y,, 4 = 66z (6.4) 

Now the equations of the auxiliary, conflict-controlled system will have the form 

Z 1’ = V, (sin zz + za co8 zso), zz' = V, (co9 zQo - zz sin zp") (6.5) 
z8’ = (VI/RI) ‘pi, zp’ = V, (sin zgo -I- 28 co9 zso) 

zg' = Vz (cos zeo - ze sin z$), zi = (VJR,) ‘pa 

---i% (P!z<- 

Here v1 and vz are the controls of P and E respectively. 
Determination of the position and time of the game, the termination set N, the initial 

position and the aims of the objects P and E in the auxiliary game are all the same as in 
the initial game (6.2), (6.3). 

Let us consider, for the positions {t,z}???s, the function of program maximin so in the 
auxiliary game (6.51, (6.3). We have, for the positions in question, a regular case of a 
game of encounter of the system (6.5) with M. We know /2/ that in the regular case of the 
game of encounter the function ~(8, zI, zz, . . . . zs) is differentiable and satisfies the relation 

~in~,rnax~~~/~~=O (6.6) 

Taking into account (6.41, we have the following relations: 

so (t, zlr z,, . . ., Zo) = 
I%* @, z,, za1 z,* za) t qez (L zz* zs* zdl"9 

*r = (6 - t) (V.2 sin C&O - V1 sin 8,0) -I- (S - t) (z*VS cosO,O - 
zaV, cos 81”) + ((6 - t)*/2) (( VzS CO8 eaO’Ps*yl?* - 
(V,S cos elO~l*)lR,) + z* - z,; 

CJ.7) 

q* = (6 - t) (V, co9 6,O - V, cos 6,o) - (6 - t) (z~lV, sin t&O - 
zsV, sin era) - ((6 - t)vz) ((V, cos 0~o~~*)/R* - 
(VI2 sin B1o~l+)/R1) $ zg - zz 

Here 'pI* and cpz* are the program controls of the objects P and E respectively, on which 
the value of the program maximin is reached in the course of computing the function so. 
According to Sect.1 we have 

E* (t, Z) = 8, (t, Z) -+ C. (8 - t) 03.8) 

where the constant c>O will be determined below. 
Let us denote by q(t, z) the partial derivatives of the function &*, i.e. sg(t, z) = (8e*/&) 

(i = 1, 2, . * ., 6). It can be confirmed that 

St2 (t, 2) + s,2 (t, 2) = 1, s4* (t, z) + S&Z (t, 2) = 1 (6.9) 

7. In accordance with Sect.1 and (6.7) m-stable bridge w 0, 2) in the problem of 
the encounter of the initial system (6.21, (6.3) with the (so i- C- (6- to))-neighbourhood of the 
set M, consists of the positions satisfying the relation 

and the condition 
&*(t, X)<E~+C.(Q--to) (7.1) 

&* (6, z(a)) = p (z (@), M) < a0 + c* (6 - to) 17.2) 

e” = e0 &> 20) 

Taking (6.8) into account, the strategy u!", extremal with respect to the stable bridge 

w (2, z) defined by the expressions (7.1), (7.2), will have, according to /3/, the following 
form: 

When {t, 2) CZ S : 
qz - sign (-cos 6r"z, (t, 2) + sin 9~~s~ (t, z) (7.3) 

if 
u (t, 2) = -sin BlO.9, (t, z) f Co8 &OS, (t, 2) J; 0 
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if 
(I (t, 2) = 0: 'PIE I-1, 11 

When {&a} E S :qPIE I-i, il. 
The last two relations mean that the control w can take any value satisfying the con- 

straint (6.2). 

8. Let us consider the initial system (6.2) and auxiliary system (6.5). In order to 
compare these systems, we introduce the vector s, defining it as follows. 

If {t, z} F S and u (t, z)# 0, then s = grad, e* (t, z). If {t,z} F S and u (t, z) = 0, then 
S = 0. We write s = 0 for the positions (t. zf f S. 

Next we estimate the magnitude of the difference between the scalar product of the vector 
s and the right-hand side of the initial system (6.2), and the scalar product of the same 
vector s andthe right-hand side of the auxiliary linear system (6.5). 

Taking into account that the third and sixth equation of the system (6.2) and (6.5) are 
the same, and the components of the vector s have the form (6.9), we find that the estimate 
A* of the difference between the scalar products mentioned above, taking (3.1) into account, 
will be 

A* < Vii it’, (66,*)” + v, (&*)21 

Here the methods of averaging /lS/ can be used to compute the quantities 66,*, 68,*. 
Assuming that c = A*, we can easily confirm that the inequality (1.4) holds for the 

initial system (6.2) as well as for the auxiliary system (6.5). 
Thus we see that all conditions of the theorem given above hold. This implies that the 

strategy U1(*) defined by expressions (7.3) guarantees the encounter of the initial system 
(6.2) with the (so+ A* (6 -to)) -neighbourhoodofthe set !l at the time t = 6. 

Note 1. Let us return to the formulation of the auxiliary game of encounter given in 
Sect.3 of this paper. Consider the motions of the object P in the XY plane caused by the 
initial system (2.1) and auxiliary system (3.2). We will assume here that the initial position 
at the instant t= t,, is the same and the object P uses at t,,gtge the same control qpl = o,* 
in both cases, satisfying the constraint (2.1). It can be shown that the position of the 
object P moving according to Eq.{3.2), will differ at the instant t=6 with an accuracy of 
the order o(&,), from the position of P moving in accordance with the initial Eq.(Z.l) by an 
amount 

Al*= AX ((PI*) = 6'~) FI f&*)'(* - t) 

The value of 68,. is found as follows. First we integrate the third equation of system 
(3.2) at t,,<tta for 'pl='pl* and initial condition 68% (t,,)= 0, and average the resulting 
value /15/. 

Using exactly the same arguments we can obtain an estimate for the difference between 
the position of the object E moving according to the initial Eq.(P.lf, and its position at 
t=*: when it moves according to the linear system (3.2), in the form 

A,*= An &@') = W vnfW?'(Q1- 0 

Here,cpr=cm* is the control of E. The value of &* is found exactly as before. 
Using the above arguments, we arrive at the followinq qualitative conclusion. Let the 

object P(E) moving according to the auxiliary system (3.2) from a fixed initial position 
at the instant t= to, witi some control qp,= TX* (m,= w*).. arrive at the instant t= 6 at 
some point R,(A,) of its domain of reachability G'r)(G(2)). Then from what was said before it 
follows that if the object P(E) moves in accordance with the initial system (2.1) from the 
same initial position at t= & and with the same control q,= R* fw= cpo*), then it will appear 
at the instant t= 0 at some point on a circle with its centre at the point A,(A,), of radius 
ri* @tL) where rl* = AI* (Q* = A,*). From this it follows that the domain of accessibility of 
theinitialsystem (2.1) will be situated in some e*-neighbourhood of the auxiliary system 
(3.2). Clearly, we have a* = A%* for (3.2) and e*= A,* for the system (3.2) with 1=2 

fFigs.2-7). 
The last assertion implies that having the above estimates for the initial game problem 

available, we could have restricted our investigation to considering the linear CauxiIiarY) 
differential game of encounter only. 

Note 2. All the arguments used in this paper can be extqnded to the case when the 
velocities of the objects P and E are known functions of time. 
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ON AN ALTERNATIVE FOR PURSUIT-EVASION GAMES IN AN INFINITE TIME INTERVAL* 

A.A. AZAMOV 

The structure of phase space of differential pursuit-evasion games is 
studied for the case when the evader is subjected to information dis- 
crimination with an advance by 6>0, &==const. The method of transfinite 
iteration of the Pshenichnyi operator is used to establish an alternative 
for differential pursuit-evasion games in an infinite time interval. 

1. Definition of the basic concepts. Consider a differential pursuit-evasion game 
in the phase space Rd with the equation of motion 

z' = f (2% n, u), u E P c Rn, Y E 0 cl R” (I.*) 

and the terminal set MC: Rd. The aim of the pursuer who controls the parameter u is to 
bring the phase point from its initial position to the set N; the aim of the evader who 
controlstheparameter v, istheopposite. Ateveryinstantoftime t > 0 thepursuerhasaccess 
to up to date information z(t) and v(s),t<s< t -t 6 (everywhere in &> 0). Following /l/, 
we assume that the number 6 is chosen by the evader at the start of the motion, and does not 
change during the motion (camp. with /2/t. 

Thetypeofinformabilitydescribedaboveisrealizedbelowbyseparatingspecific classesofthe 
strategies P,Q of the pursuer and evader respectively (for brevity we will call such a pair 
of strategies the game). Here every triad go Rd, UE P, VEQ generates a unique trajectory 

s (t; E, u, P), t > 0. 
Let 1 denote either a segment of the form [O,rl, or a semi-axis [O,co). By definition, a 

pursuit originating at the initial point E can be successfully completed in the interval I, 
if a strategy UEP exists such that an inclusion z(t;e, U, V)~hf occurs at some ref 
whatever VEQ is. Similarly, escape from the point E is possible in the interval I, if a 
strategy BE Q exists such that we have z (t; 5, U, V)EM for any t EI, whatever UE P 
is. 

Let I+ (or I-)denote the set of all points from which the pursuit (or possibly escape) 

*Pr~kl.~ate~.~ekhan.,26,4,561-566,1986 


